Mitigating Read-disturbance Errors in STT-RAM Caches by Using Data Compression

نویسنده

  • Sparsh Mittal
چکیده

Due to its high density and close-to-SRAM read latency, spin transfer torque RAM (STT-RAM) is considered one of the most-promising emerging memory technologies for designing large last level caches (LLCs). However, in deep sub-micron region, STT-RAM shows read-disturbance error (RDE) whereby a read operation may modify the stored data value and this presents a severe threat to performance and reliability of STT-RAM caches. In this paper, we present a technique, named SHIELD, to mitigate RDE in STT-RAM LLCs. SHIELD uses data compression to reduce number of read operations from STT-RAM blocks to avoid RDE and also to reduce the number of bits written to cache during both write and restore operations. Experimental results have shown that SHIELD provides significant improvement in performance and energy efficiency. SHIELD consumes smaller energy than two previous RDE-mitigation techniques, namely high-current restore required read (HCRR, also called restore-after-read) and low-current long latency read (LCLL) and even an ideal RDE-free STT-RAM cache.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Enhancement Guaranteed Cache Using STT-RAM Technology

Spin Transfer Torque RAM (STT-RAM) is a form of computer data storage which allows data items to read and write faster. Every peripheral circuit have some static power consumption, which is consumed while there is no circuit activity. The main objective of the paper is to reduce the static power consumption in peripheral circuits with the help of STT-RAM technology. Instead of fetching instruct...

متن کامل

Resilience-Driven STT-RAM Cache Architecture for Approximate Computing

High-end manycore microprocessors exhibit large-sized caches (32MB – 128MB) that consume a significant amount of total energy. These caches are typically composed of 6T-SRAM cells, which lack efficiency in terms of area and leakage power [1][2]. The emerging memory technologies, like Spin-Transfer Torque RAM (STT-RAM), not only incur reduced leakage power but also provide high integration densi...

متن کامل

Performance and Energy-Efficient Design of STT-RAM Last-Level Cache

Recent research has proposed having a die-stacked last-level cache (LLC) to overcome the memory wall. Lately, spin-transfer-torque random access memory (STT-RAM) caches have received attention, since they provide improved energy efficiency compared with DRAM caches. However, recently proposed STT-RAM cache architectures unnecessarily dissipate energy by fetching unneeded cache lines (CLs) into ...

متن کامل

Impact of Cache Coherence Protocols on the Power Consumption of STT-RAM-Based LLC

To gain higher density and lower leakage, STT-RAM has been considered an alternative to SRAM for implementing last-level caches (LLCs). However, STT-RAM requires high write energy to program. Consequently, frequent write-backs from the upper-level caches or cache fills from the main memory will result in high LLC power. Both the broadcast and write-back traffic are affected by the cache coheren...

متن کامل

A Survey of Soft-Error Mitigation Techniques for Non-Volatile Memories

Non-volatile memories (NVMs) offer superior density and energy characteristics compared to the conventional memories; however, NVMs suffer from severe reliability issues that can easily eclipse their energy efficiency advantages. In this paper, we survey architectural techniques for improving the soft-error reliability of NVMs, specifically PCM (phase change memory) and STT-RAM (spin transfer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06790  شماره 

صفحات  -

تاریخ انتشار 2016